Nicksxs's Blog

What hurts more, the pain of hard work or the pain of regret?

说来也惭愧,这个 ThreadLocal 其实一直都是一知半解,而且看了一下之后还发现记错了,所以还是记录下
原先记忆里的都是反过来,一个 ThreadLocal 是里面按照 thread 作为 key,存储线程内容的,真的是半解都米有,完全是错的,这样就得用 concurrentHashMap 这种去存储并且要锁定线程了,然后内容也只能存一个了,想想简直智障

究竟是啥结构

比如我们在代码中 new 一个 ThreadLocal,

public static void main(String[] args) {
        ThreadLocal<Man> tl = new ThreadLocal<>();

        new Thread(() -> {
            try {
                TimeUnit.SECONDS.sleep(2);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            System.out.println(tl.get());
        }).start();
        new Thread(() -> {
            try {
                TimeUnit.SECONDS.sleep(1);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            tl.set(new Man());
        }).start();
    }

    static class Man {
        String name = "nick";
    }

这里构造了两个线程,一个先往里设值,一个后从里取,运行看下结果,

知道这个用法的话肯定知道是取不到值的,只是具体的原理原来搞错了,我们来看下设值 set 方法

public void set(T value) {
    Thread t = Thread.currentThread();
    ThreadLocalMap map = getMap(t);
    if (map != null)
        map.set(this, value);
    else
        createMap(t, value);
}

写博客这会我才明白我原来咋会错得这么离谱,看到第一行代码 t 就是当前线程,然后第二行就是用这个线程去getMap,然后我是把这个当成从 map 里取值了,其实这里是

ThreadLocalMap getMap(Thread t) {
    return t.threadLocals;
}

获取 t 的 threadLocals 成员变量,那这个 threadLocals 又是啥呢

它其实是线程 Thread 中的一个类型是java.lang.ThreadLocal.ThreadLocalMap的成员变量
这是 ThreadLocal 的一个静态成员变量

static class ThreadLocalMap {

        /**
         * The entries in this hash map extend WeakReference, using
         * its main ref field as the key (which is always a
         * ThreadLocal object).  Note that null keys (i.e. entry.get()
         * == null) mean that the key is no longer referenced, so the
         * entry can be expunged from table.  Such entries are referred to
         * as "stale entries" in the code that follows.
         */
        static class Entry extends WeakReference<ThreadLocal<?>> {
            /** The value associated with this ThreadLocal. */
            Object value;

            Entry(ThreadLocal<?> k, Object v) {
                super(k);
                value = v;
            }
        }
    }

全部代码有点长,只截取了一小部分,然后我们再回头来分析前面说的 set 过程,再 copy 下代码

public void set(T value) {
    Thread t = Thread.currentThread();
    ThreadLocalMap map = getMap(t);
    if (map != null)
        map.set(this, value);
    else
        createMap(t, value);
}

获取到 map 以后呢,如果 map 不为空,就往 map 里 set,这里注意 key 是啥,其实是当前这个 ThreadLocal,这里就比较明白了究竟是啥结构,每个线程都会维护自身的 ThreadLocalMap,它是线程的一个成员变量,当创建 ThreadLocal 的时候,进行设值的时候其实是往这个 map 里以 ThreadLocal 作为 key,往里设 value。

内存泄漏是什么鬼

这里又要看下前面的 ThreadLocalMap 结构了,类似 HashMap,它有个 Entry 结构,在设置的时候会先包装成一个 Entry

private void set(ThreadLocal<?> key, Object value) {

        // We don't use a fast path as with get() because it is at
        // least as common to use set() to create new entries as
        // it is to replace existing ones, in which case, a fast
        // path would fail more often than not.

        Entry[] tab = table;
        int len = tab.length;
        int i = key.threadLocalHashCode & (len-1);

        for (Entry e = tab[i];
             e != null;
             e = tab[i = nextIndex(i, len)]) {
            ThreadLocal<?> k = e.get();

            if (k == key) {
                e.value = value;
                return;
            }

            if (k == null) {
                replaceStaleEntry(key, value, i);
                return;
            }
        }

        tab[i] = new Entry(key, value);
        int sz = ++size;
        if (!cleanSomeSlots(i, sz) && sz >= threshold)
            rehash();
}

这里其实比较重要的就是前面的 Entry 的构造方法,Entry 是个 WeakReference 的子类,然后在构造方法里可以看到 key 会被包装成一个弱引用,这里为什么使用弱引用,其实是方便这个 key 被回收,如果前面的 ThreadLocal tl实例被设置成 null 了,如果这里是直接的强引用的话,就只能等到线程整个回收了,但是其实是弱引用也会有问题,主要是因为这个 value,如果在 ThreadLocal tl 被设置成 null 了,那么其实这个 value 就会没法被访问到,所以最好的操作还是在使用完了就 remove 掉

题目介绍

Given a binary tree, find the lowest common ancestor (LCA) of two given nodes in the tree.

According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes p and q as the lowest node in T that has both p and q as descendants (where we allow a node to be a descendant of itself).”

给定一个二叉树, 找到该树中两个指定节点的最近公共祖先。

百度百科中最近公共祖先的定义为:“对于有根树 T 的两个节点 pq,最近公共祖先表示为一个节点 x,满足 xpq 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”

代码

public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
        // 如果当前节点就是 p 或者是 q 的时候,就直接返回了
        // 当没找到,即 root == null 的时候也会返回 null,这是个重要的点
        if (root == null || root == p || root == q) return root;
        // 在左子树中找 p 和 q
        TreeNode left = lowestCommonAncestor(root.left, p, q);
        // 在右子树中找 p 和 q
        TreeNode right = lowestCommonAncestor(root.right, p, q);
        // 当左边是 null 就直接返回右子树,但是这里不表示右边不是 null,所以这个顺序是不影响的
        // 考虑一种情况,如果一个节点的左右子树都是 null,那么其实对于这个节点来说首先两个子树分别调用
        // lowestCommonAncestor会在开头就返回 null,那么就是上面 left 跟 right 都是 null,然后走下面的判断的时候
        // 其实第一个 if 就返回了 null,如此递归返回就能达到当子树中没有找到 p 或者 q 的时候只返回 null
        if (left == null) {
            return right;
        } else if (right == null) {
            return left;
        } else {
            return root;
        }
//        if (right == null) {
//            return left;
//        } else if (left == null) {
//            return right;
//        } else {
//            return root;
//        }
//        return left == null ? right : right == null ? left : root;
    }

除了引用,Rust 还有另外一种不持有所有权的数据类型:切片(slice)。切片允许我们引用集合中某一段连续的元素序列,而不是整个集合。
例如代码

fn main() {
    let mut s = String::from("hello world");

    let word = first_word(&s);

    s.clear();

    // 这时候虽然 word 还是 5,但是 s 已经被清除了,所以就没存在的意义
}

这里其实我们就需要关注 s 的存在性,代码的逻辑合理性就需要额外去维护,此时我们就可以用切片

let s = String::from("hello world")

let hello = &s[0..5];
let world = &s[6..11];

其实跟 Python 的list 之类的语法有点类似,当然里面还有些语法糖,比如可以直接用省略后面的数字表示直接引用到结尾

let hello = &s[0..];

甚至再进一步

let hello = &s[..];

使用了切片之后

fn first_word(s: &String) -> &str {
    let bytes = s.as_bytes();

    for (i, &item) in bytes.iter().enumerate() {
        if item == b' ' {
            return &s[0..i];
        }
    }

    &s[..]
}
fn main() {
    let mut s = String::from("hello world");

    let word = first_word(&s);

    s.clear(); // error!

    println!("the first word is: {}", word);
}

那再执行 main 函数的时候就会抛错,因为 word 还是个切片,需要保证 s 的有效性,并且其实我们可以将函数申明成

fn first_word(s: &str) -> &str {

这样就既能处理&String 的情况,就是当成完整字符串的切片,也能处理普通的切片。
其他类型的切片

let a = [1, 2, 3, 4, 5];
let slice = &a[1..3];

简单记录下,具体可以去看看这本书

前面这个五一回去之前,LD 姐姐跟我说电脑很卡了,想让我重装系统,问了下 LD 可能是那个 09 年买的笔记本,想想有点害怕[捂脸],前年有一次好像让我帮忙装了她同事的一个三星的笔记本,本着一些系统洁癖,所以就从开始找纯净版的 win7 家庭版,因为之前那些本基本都自带 win7 的家庭版,而且把激活码就贴在机器下面,然后从三星官网去找官方驱动,还好这个机型的驱动还在,先做了系统镜像,其实感觉这种情况需要两个 U 盘,一个 U 盘装系统作为安装启动盘,一个放驱动,毕竟不是专业装系统的,然后因为官方驱动需要一个个下载一个个安装,然后驱动文件下载的地方还没标明是 32 位还是 64 位的,结果还被 LD 姐姐催着,一直问好没好,略尴尬,索性还是找个一键安装的

这次甚至更夸张,上次还让带回去,我准备好了系统镜像啥的,第二天装,这次直接带了两个老旧笔记本过来说让当天就装好,感觉有点像被当修电脑的使,又说这些电脑其实都不用了的,都是为了她们当医生的要每年看会课,然后只能用电脑浏览器看,结果都在用 360 浏览器,真的是万恶的 360,其实以前对 360 没啥坏印象,毕竟以前也经常用,只是对于这些老电脑,360 全家桶真的就是装了就废了,2G 的内存,开机就开着 360 安全卫士,360 杀毒,有一个还装了腾讯电脑管家,然后腾讯视频跟爱奇艺也开机启动了,然后还打开 360 浏览器看课,就算再好的系统也吃不消这么用,重装了系统,还是这么装这些东西,也是分分钟变卡,可惜他们都没啥这类概念。

对于他们要看的课,更搞笑的是,明明在页面上注明了说要使用 IE 浏览器,结果他们都在用 360 浏览器看,但是这个也不能完全怪他们,因为实在是现在的 IE 啥的也有开始不兼容 flash 的配置,需要开启兼容配置,但是只要开启了之后就可以直接用 IE 看,比 360 靠谱很多, 资源占用也比较少,360 估计是基于 chromium 加了很多内置的插件,本身 chromium 也是内存大户,但是说这些其实他们也不懂,总觉得找我免费装下系统能撑一段时间,反正对我来说也应该很简单(他们觉得),实际上开始工作以后,我自己想装个双系统都是上淘宝买别人的服务装的,台式机更是几年没动过系统了,因为要重装一大堆软件,数据备份啥的,还有驱动什么的,分区格式,那些驱动精灵啥的也都是越来越坑,一装就给你带一堆垃圾软件。

感悟是,总觉得学计算机的就应该会装系统,会修电脑,之前亲戚还拿着一个完全开不起来的笔记本让我来修,这真的是,我说可以找官方维修的,结果我说我搞不定,她直接觉得是修不好了,直接电脑都懒得拿回去了,后面又一次反复解释了才明白,另外就是 360 全家桶,别说老电脑了,新机器都不太吃得消。

题目介绍

You are given an n x n 2D matrix representing an image, rotate the image by 90 degrees (clockwise).

You have to rotate the image in-place, which means you have to modify the input 2D matrix directly. DO NOT allocate another 2D matrix and do the rotation.

如图,这道题以前做过,其实一看有点蒙,好像规则很容易描述,但是代码很难写,因为要类似于贪吃蛇那样,后来想着应该会有一些特殊的技巧,比如翻转等

代码

直接上码

public void rotate(int[][] matrix) {
        // 这里真的傻了,长宽应该是一致的,所以取一次就够了
        int lengthX = matrix[0].length;
        int lengthY = matrix.length;
        int temp;
        System.out.println(lengthY - (lengthY % 2) / 2);
        // 这里除错了,应该是减掉余数再除 2
//        for (int i = 0; i < lengthY - (lengthY % 2) / 2; i++) {
        /**
         * 1 2 3             7 8 9
         * 4 5 6     =>      4 5 6     先沿着 4 5 6 上下交换
         * 7 8 9             1 2 3
         */
        for (int i = 0; i < (lengthY - (lengthY % 2)) / 2; i++) {
            for (int j = 0; j < lengthX; j++) {
                temp = matrix[i][j];
                matrix[i][j] = matrix[lengthY-i-1][j];
                matrix[lengthY-i-1][j] = temp;
            }
        }

        /**
         * 7 8 9               7 4 1
         * 4 5 6     =>        8 5 2   这里再沿着 7 5 3 这条对角线交换
         * 1 2 3               9 6 3
         */
        for (int i = 0; i < lengthX; i++) {
            for (int j = 0; j <= i; j++) {
                if (i == j) {
                    continue;
                }
                temp = matrix[i][j];
                matrix[i][j] = matrix[j][i];
                matrix[j][i] = temp;
            }
        }
    }

还没到可以直接归纳题目类型的水平,主要是几年前做过,可能有那么点模糊的记忆,当然应该也有直接转的方法

0%